Lecture 25: Reversed Martingales

STAT205 Lecturer: Jim Pitman Scribe: Daisy Huang, Jing Lei <yanhuang@stat,jingled@stat>

References: [1], section 4.6.

25.1Exchangeable σ -field

Let $X_1, X_2, ...$ be a sequence of real-valued random variables. Define $\mathcal{E}_n = \sigma(f(X_1, X_2, ...))$ where $f(X_1, X_2, ...)$ is symmetric with respect to the first n variables; i.e., $f(X_1, X_2, ...) =$ $f(X_{\pi(1)}, X_{\pi(2)}, ...)$ where π is a permutation such that $\pi: \{1, 2, ...n\} \rightarrow \{1, 2, ...n\}$ and $\pi(k) = k$ for k > n and f is product Borel measurable. $\mathcal{E}_{\infty} = \bigcap_{n} \mathcal{E}_{n}$ is called the exchangeable σ -field.

Remark:

- 1. X is \mathcal{E}_n -measurable iff $X = f(X_1, X_2, ...)$ for some such f.
- 2. $\mathcal{E}_n \supseteq \mathcal{E}_{n+1}$ because \mathcal{E}_{n+1} requires more symmetries. Also, $\mathcal{E}_n \downarrow \mathcal{E}_{\infty}$ since

$$\mathcal{E}_{\infty} \supseteq \text{tail } \sigma\text{-field of } \{X_1, X_2, ...\}$$
 (25.1)

$$\mathcal{E}_{\infty} \supseteq \text{tail } \sigma\text{-field of } \{X_1, X_2, ...\}$$

$$= \bigcap_{n} \sigma(X_n, X_{n+1}, ...)$$
(25.1)
$$(25.2)$$

(noting that $\sigma(X_{n+1}, X_{n+2}, ...) \subseteq \mathcal{E}_n$ and shifting the index n).

The "basic" symmetric functions of $X_1, X_2, ... X_n$ are the order statistics

$$\min_{1 \le i \le n} X_i = X_{n,1} \le X_{n,2} \le \dots \le X_{n,n} = \max_{1 \le i \le n} X_i.$$

Obviously, each $X_{n,k}$ is a symmetric function of $X_1, X_2, ... X_n$. You can check that $\mathcal{E}_n = \sigma(X_{n,1}, X_{n,2}, ... X_{n,n}, X_{n+1}, X_{n+2}, ...).$

Example 25.1 $S_n = X_1 + X_2 + ... + X_n$ is in \mathcal{E}_n but not in the tail σ -field of ${X_1, X_2, ...}.$

25.2 Hewitt-Savage 0-1 Law

Theorem 25.2 (Hewitt-Savage 0-1 **Law)** If $X_1, X_2, ...$ is i.i.d., then every event in \mathcal{E}_{∞} has probability 0 or 1.

(Compare this with Kolmogorov's 0-1 Law.)

Recall that if $X_1, X_2, ...$ are i.i.d. and exchangeable (i.e.,

$$(X_1, X_2, ... X_n) \stackrel{d}{=} (X_{\pi(1)}, X_{\pi(2)}, ..., X_{\pi(n)})$$

for all permutations π on n elements) and $\mathbb{E}|X_1| < \infty$, then $(S_n/n, \mathcal{E}_n)_{n \geq 1}$ is a reversed martingale. If $S_n/n = \mathbb{E}(X_1|\mathcal{E}_n)$, then this is obvious because $\mathcal{E}_n \downarrow$.

To see this: exchangeability implies that

$$\mathbb{E}(X_1|\mathcal{E}_n) = \mathbb{E}(X_k|\mathcal{E}_n)$$
 for every $1 \le k \le n$.

This is because

$$(X_1, f(X_1, \dots, X_n, X_{n+1}, X_{n+2}, \dots))$$

$$\stackrel{d}{=} (X_k, f(X_k, \dots, X_{k-1}, X_1, X_{k+1}, \dots, X_n, X_{n+1}, X_{n+2}, \dots))$$

$$= (X_k, f(X_1, X_2, \dots, X_n, X_{n+1}, X_{n+2}, \dots))$$

Now check the definition of the claim:

$$n\mathbb{E}(X_1|\mathcal{E}_n) = \mathbb{E}(S_n|\mathcal{E}_n) = S_n \text{ since } S_n \subseteq \mathcal{E}_n.$$

Now, we prove the theorem. The plan is to show that for every event $F \in \sigma(X_1, ..., X_n)$, $\mathbb{P}(F|\mathcal{E}_{\infty}) = \mathbb{P}(F)$. This says that $\sigma(X_1, ..., X_n)$ is independent of \mathcal{E}_{∞} . To see this, let $n \to \infty$ and learn that $\sigma(X_1, X_2, ...)$ is independent of \mathcal{E}_{∞} . But this implies that \mathcal{E}_n is independent of \mathcal{E}_{∞} , which leads to the result of the 0-1 Law.

Proof: By the Martingale Convergence Theorem,

$$\mathbb{P}(F|\mathcal{E}_{\infty}) = \lim_{n \to \infty} \mathbb{P}(F|\mathcal{E}_n)$$

Let $F = \{X_1 \in \hat{F}\}$ for some $\hat{F} \subseteq \mathbb{R}$. Then,

$$\mathbb{P}(F \mid \mathcal{E}_n) = \mathbb{E}(\mathbf{1}_{\hat{F}(X_1)} \mid \mathcal{E}_n) \\
= \mathbb{E}(\mathbf{1}_{\hat{F}(X_k)} \mid \mathcal{E}_n) \\
= \mathbb{E}\left(\frac{1}{n} \sum_{k=1}^n \mathbf{1}_{\hat{F}(X_k)} \mid \mathcal{E}_n\right) \\
= \frac{1}{n} \sum_{k=1}^n \mathbf{1}_{\hat{F}(X_k)} \\
\to \mathbb{E}(\mathbf{1}_{\hat{F}(X_k)}) \\
= \mathbb{P}(X_1 \in \hat{F}) \\
= \mathbb{P}(F).$$

This proves for the case $F \in \sigma(X_1)$. To deal with the case $F \in \sigma(X_1, X_2)$, we do the same thing. Let $F = \{(X_1, X_2) \in \hat{F}\}$ for some $\hat{F} \subseteq \mathbb{R}^2$ and $\varphi(X_1, X_2) = \mathbf{1}((X_1, X_2) \in \hat{F})$. Then,

$$\mathbb{P}(F \mid \mathcal{E}_n) = \mathbb{E}(\varphi(X_1, X_2) \mid \mathcal{E}_n)
= \mathbb{E}(\varphi(X_i, X_j) \mid \mathcal{E}_n) \text{ for } i \neq j
= \mathbb{E}\left(\frac{1}{n(n-1)} \sum_{1 \leq i \neq j \leq n} \varphi(X_i, X_j) \mid \mathcal{E}_n\right)
= \frac{1}{n(n-1)} \sum_{1 \leq i \neq j \leq n} \varphi(X_i, X_j).$$

Consider $\varphi(X_i, X_j) = f(X_i)g(X_j)$, i.e. \hat{F} is rectangular; then

$$\mathbb{P}(F \mid \mathcal{E}_n) = \frac{1}{n(n-1)} \sum_{1 \leq i \neq j \leq n} f(X_i) g(X_j)
= \frac{1}{n(n-1)} \left(\sum_{1 \leq i,j \leq n} f(X_i) g(X_j) - \sum_{i=1}^n f(X_i) g(X_i) \right)
= \frac{1}{n(n-1)} \left(\sum_{i=1}^n f(X_i) \sum_{i=1}^n g(X_i) - \sum_{i=1}^n f(X_i) g(X_i) \right)
\xrightarrow{a.s.} \mathbb{E}f(X_1) \mathbb{E}g(X_2)
= \mathbb{E}\varphi(X_1, X_2)
= \mathbb{P}(F).$$

To finish, for $\hat{F} \in \mathcal{B}(\mathbb{R}^2)$ we just use the $\pi - \lambda$ theorem. Similarly for $\hat{F} \in \mathcal{B}(\mathbb{R}^k)$, $k \geq 3$.

So far, we've shown that

$$\mathbb{P}(F \mid \mathcal{E}_{\infty}) = \mathbb{P}(F) \text{ for all } F \in \sigma(X_1, \dots, X_n),$$

i.e. \mathcal{E}_{∞} is independent of $\sigma(X_1, \dots, X_n)$. Similarly as in the proof of Kolmogorov's 0-1 Law, we can learn that \mathcal{E}_{∞} is independent of $\sigma(X_1, X_2, \dots)$ by sending $n \to \infty$. Thus \mathcal{E}_{∞} is independent of itself, which completes the proof.

25.3 de Finetti's Theorem

Theorem 25.3 If X_1, X_2, \dots , are exchangeable, and $F_n(x) := \frac{1}{n} \sum_{1 \le i \le n} \mathbf{1}(X_i \le x)$, then

$$\lim_{n \to \infty} \sup_{x} |F_n(x) - F(x)| = 0$$

for some random CDF $(F(x), x \in \mathbb{R})$.

Also, given \mathcal{E}_{∞} , the X_1, X_2, \cdots , are i.i.d. with common distribution F; i.e.

$$\mathbb{P}(X_1 \le x_1, X_2 \le x_2, \dots, X_k \le x_k | \mathcal{E}_{\infty}) = F(x_1)F(x_2) \cdot \dots \cdot F(x_k). \tag{25.3}$$

Note: Conceptually, it's as if F were first picked at random in some way from the set of probability CDF's on \mathbb{R} , and then we sample from F.

Proof Sketch: (This sketch proof is incomplete – see the text book for details.)

1. Look at (25.3) for k=1, and by MGCT and exchangeability we have

$$F(x) = \mathbb{P}(X_1 \le x | \mathcal{E}_{\infty})$$

$$= \lim_{n \to \infty} \mathbb{P}(X_1 \le x | \mathcal{E}_n) \text{ a.s.}$$

$$= \lim_{n \to \infty} F_n(x) \text{ a.s.}$$

- 2. Using the fact that $F_n(x)$ is non-decreasing in x for fixed n, we learn that F(x) is non-decreasing in x almost surely.
- 3. Clean up over rationals: let

$$F^{\star}(x) := \lim_{q \downarrow x} F(q),$$

where $q \in \mathbb{Q}$, the set of all rational numbers. Then argue that $F^*(x)$ is a CDF and replace F(x) by $F^*(x)$.

References

[1] Richard Durrett. Probability: theory and examples, 3rd edition. Thomson Brooks/Cole, 2005.