
Lecture 25 : Reversed Martingales

STAT205 Lecturer: Jim Pitman Scribe: Daisy Huang, Jing Lei <yanhuang@stat,jinglei@stat>

References: [1], section 4.6.

25.1 Exchangeable σ-field

Let X1, X2, ... be a sequence of real-valued random variables. Define En = σ(f(X1, X2, ...))
where f(X1, X2, ...) is symmetric with respect to the first n variables; i.e., f(X1, X2, ...) =
f(Xπ(1), Xπ(2), ...) where π is a permutation such that π : {1, 2, ...n} → {1, 2, ...n}
and π(k) = k for k > n and f is product Borel measurable. E∞ =

⋂

n En is called the
exchangeable σ-field.

Remark:

1. X is En-measurable iff X = f(X1, X2, ...) for some such f .

2. En ⊇ En+1 because En+1 requires more symmetries. Also, En ↓ E∞ since

E∞ ⊇ tail σ-field of {X1, X2, ...} (25.1)

=
⋂

n

σ(Xn, Xn+1, ...) (25.2)

(noting that σ(Xn+1, Xn+2, ...) ⊆ En and shifting the index n).

The “basic” symmetric functions of X1, X2, ...Xn are the order statistics

min
1≤i≤n

Xi = Xn,1 ≤ Xn,2 ≤ ... ≤ Xn,n = max
1≤i≤n

Xi.

Obviously, each Xn,k is a symmetric function of X1, X2, ...Xn. You can check that
En = σ(Xn,1, Xn,2, ...Xn,n, Xn+1, Xn+2, ...).

Example 25.1 Sn = X1 + X2 + ... + Xn is in En but not in the tail σ-field of

{X1, X2, ...}.

25-1



Lecture 25: Reversed Martingales 25-2

25.2 Hewitt-Savage 0 − 1 Law

Theorem 25.2 (Hewitt-Savage 0 − 1 Law) If X1, X2, ... is i.i.d., then every event

in E∞ has probability 0 or 1.

(Compare this with Kolmogorov’s 0 − 1 Law.)

Recall that if X1, X2, ... are i.i.d. and exchangeable (i.e.,

(X1, X2, ...Xn)
d
= (Xπ(1), Xπ(2), ..., Xπ(n))

for all permutations π on n elements) and E|X1| < ∞, then (Sn/n, En)n≥1 is a reversed
martingale. If Sn/n = E(X1|En), then this is obvious because En ↓.

To see this: exchangeability implies that

E(X1|En) = E(Xk|En) for every 1 ≤ k ≤ n.

This is because

(X1, f(X1, · · · , Xn, Xn+1, Xn+2, · · · ))
d
= (Xk, f(Xk, · · · , Xk−1, X1, Xk+1, · · · , Xn, Xn+1, Xn+2, · · · ))

= (Xk, f(X1, X2, ..., Xn, Xn+1, Xn+2...))

Now check the definition of the claim:

nE(X1|En) = E(Sn|En) = Sn since Sn ⊆ En.

Now, we prove the theorem. The plan is to show that for every event F ∈ σ(X1, ..., Xn),
P(F |E∞) = P(F ). This says that σ(X1, ..., Xn) is independent of E∞. To see this, let
n → ∞ and learn that σ(X1, X2, ...) is independent of E∞. But this implies that En

is independent of E∞, which leads to the result of the 0 − 1 Law.

Proof: By the Martingale Convergence Theorem,

P(F |E∞) = lim
n→∞

P(F |En)
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Let F = {X1 ∈ F̂} for some F̂ ⊆ R. Then,

P(F | En) = E(1F̂ (X1)|En)

= E(1F̂ (Xk)|En)

= E

(

1

n

n
∑

k=1

1F̂ (Xk)|En

)

=
1

n

n
∑

k=1

1F̂ (Xk)

→ E(1F̂ (Xk))

= P(X1 ∈ F̂ )

= P(F ).

This proves for the case F ∈ σ(X1). To deal with the case F ∈ σ(X1, X2), we do the
same thing. Let F = {(X1, X2) ∈ F̂} for some F̂ ⊆ R2 and ϕ(X1, X2) = 1((X1, X2) ∈
F̂ ). Then,

P(F | En) = E(ϕ(X1, X2)|En)

= E(ϕ(Xi, Xj)|En) for i 6= j

= E

(

1

n(n − 1)

∑

1≤i6=j≤n

ϕ(Xi, Xj)|En

)

=
1

n(n − 1)

∑

1≤i6=j≤n

ϕ(Xi, Xj).

Consider ϕ(Xi, Xj) = f(Xi)g(Xj), i.e. F̂ is rectangular; then

P(F | En) =
1

n(n − 1)

∑

1≤i6=j≤n

f(Xi)g(Xj)

=
1

n(n − 1)

(

∑

1≤i,j≤n

f(Xi)g(Xj) −
n
∑

i=1

f(Xi)g(Xi)

)

=
1

n(n − 1)

(

n
∑

i=1

f(Xi)
n
∑

i=1

g(Xi) −
n
∑

i=1

f(Xi)g(Xi)

)

a.s.

−→ Ef(X1)Eg(X2)

= Eϕ(X1, X2)

= P(F ).

To finish, for F̂ ∈ B(R2) we just use the π − λ theorem. Similarly for F̂ ∈ B(Rk),
k ≥ 3.
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So far, we’ve shown that

P(F | E∞) = P(F ) for all F ∈ σ(X1, · · · , Xn),

i.e. E∞ is independent of σ(X1, · · · , Xn). Similarly as in the proof of Kolmogorov’s
0-1 Law, we can learn that E∞ is independent of σ(X1, X2, · · · ) by sending n → ∞.
Thus E∞ is independent of itself, which completes the proof.

25.3 de Finetti’s Theorem

Theorem 25.3 If X1, X2, · · · , are exchangeable, and Fn(x) := 1
n

∑

1≤i≤n 1(Xi ≤ x),
then

lim
n→∞

sup
x

|Fn(x) − F (x)| = 0

for some random CDF (F (x), x ∈ R).

Also, given E∞, the X1, X2, · · · , are i.i.d. with common distribution F ; i.e.

P(X1 ≤ x1, X2 ≤ x2, · · · , Xk ≤ xk|E∞) = F (x1)F (x2) · · · ·F (xk). (25.3)

Note: Conceptually, it’s as if F were first picked at random in some way from the
set of probability CDF’s on R, and then we sample from F .

Proof Sketch: (This sketch proof is incomplete – see the text book for details.)

1. Look at (25.3) for k = 1, and by MGCT and exchangeability we have

F (x) = P(X1 ≤ x|E∞)

= lim
n→∞

P(X1 ≤ x|En) a.s.

= lim
n→∞

Fn(x) a.s.

2. Using the fact that Fn(x) is non-decreasing in x for fixed n, we learn that F (x)
is non-decreasing in x almost surely.

3. Clean up over rationals: let

F ?(x) := lim
q↓x

F (q),

where q ∈ Q, the set of all rational numbers. Then argue that F ?(x) is a CDF
and replace F (x) by F ?(x).
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